If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4z^2+2z-16=0
a = 4; b = 2; c = -16;
Δ = b2-4ac
Δ = 22-4·4·(-16)
Δ = 260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{260}=\sqrt{4*65}=\sqrt{4}*\sqrt{65}=2\sqrt{65}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{65}}{2*4}=\frac{-2-2\sqrt{65}}{8} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{65}}{2*4}=\frac{-2+2\sqrt{65}}{8} $
| n÷2+6=8 | | n^2-3n-66=0 | | -9-7c=6-2c-10 | | Y^2+15y+21=0 | | 1/6-1/12+1/2p=1/2+p | | Y2+15y+21=0 | | 2n+4=50 | | 2p-1+2p=2+p | | 3x−13=−5x+103x-13=-5x+10 | | 3a-4=18 | | 3a+4=18 | | n-20=13 | | 5x-7=3(x-1) | | n-20=n | | 10/7=r−(−5/8) | | 2(x)+2(2x+5)=292 | | (x-5)^2-9=0(x1) | | 5b-2b+1=b-11 | | .75x=140 | | 0.13x^2-2x+9.7=0 | | 3p-1.2=-7p-17.1 | | 19=16t^2+36t+5 | | 6m^-8m+4=0 | | -8+12t=-5t | | 4l-5=3+4l | | 2(x+7)=3(x-6 | | (x+5)4=44 | | x-0.06x=116,560 | | (2x-2)2=30 | | 5z-7=0 | | x+7=2*x+2 | | (y-2)-(y+2)=9y |